3D-Printing Technologies for Craniofacial Rehabilitation Reconstruction and Regeneration

3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration

Additive Manufacturing of Biomaterials, Tissues, and Organs

The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are three key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects.

Associate Editor Amir Abbas Zadpoor oversaw the review of this article.

Ethan L. Nyberg and Ashley L. Farris contributed equally to this work.

This work was supported by an NIH Biomedical Engineering Training Grant (ELN), an NSF graduate research fellowship (ALF), an NIH pre-doctoral fellowship (BPH), and grants from the Maryland Stem Cell Research Fund and the Department of Defense (WLG).

The authors declare no conflict of interest.

No animal or human studies were carried out by the authors for this article.

Aitasalo, K. M. J., J. M. Piitulainen, J. Rekola, and P. K. Vallittu. Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant.

Ariani, N., A. Visser, R. P. van Oort, L. Kusdhany, T. B. Rahardjo, B. P. Krom, H. C. van der Mei, and A. Vissink. Current state of craniofacial prosthetic rehabilitation.

Artel, A., H. Mehdizadeh, Y.-C. Chiu, E. M. Brey, and A. Cinar. An agent-based model for the investigation of neovascularization within porous scaffolds.

Azami, M., A. Samadikuchaksaraei, and S. Ali. Poursamar. Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering.

Azuma, M., T. Yanagawa, N. Ishibashi-Kanno, F. Uchida, T. Ito, K. Yamagata, S. Hasegawa, K. Sasaki, K. Adachi, K. Tabuchi, M. Sekido, and H. Bukawa. Mandibular reconstruction using plates prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity.

Binder, K. In situ bioprinting of the skin. (Doctoral Dissertation)

Retrieved from Z. Smith Reynolds Library

Brie, J., T. Chartier, C. Chaput, C. Delage, B. Pradeau, F. Caire, M. P. Boncoeur, and J. J. Moreau. A new custom made bioceramic implant for the repair of large and complex craniofacial bone defects.

Brown, E. N., A. H. Dorafshar, B. Bojovic, M. R. Christy, D. E. Borsuk, T. N. Kelley, C. K. Shaffer, and E. D. Rodriguez. Total face, double jaw, and tongue transplant simulation: a cadaveric study using computer-assisted techniques.

Broyles, J. M., N. B. Abt, S. M. Shridharani, B. Bojovic, E. D. Rodriguez, and A. H. Dorafshar. The fusion of craniofacial reconstruction and microsurgery.

Cai, K., H. Dong, C. Chen, L. Yang, K. D. Jandt, and L. Deng. Inkjet printing of laminin gradient to investigate endothelial cellular alignment.

Catelas, I., N. Sese, B. M. Wu, J. C. Y. Dunn, S. Helgerson, and B. Tawil. Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro.

Chiu, Y. C., M. H. Cheng, H. Engel, S. W. Kao, J. C. Larson, S. Gupta, and E. M. Brey. The role of pore size on vascularization and tissue remodeling in PEG hydrogels.

Cui, X., K. Breitenkamp, M. G. Finn, M. Lotz, and D. D. DLima. Direct human cartilage repair using three-dimensional bioprinting technology.

DUrso, P. S., R. L. Atkinson, M. W. Lanigan, W. J. Earwaker, I. J. Bruce, A. Holmes, T. M. Barker, D. J. Effeney, and R. G. Thompson. Stereolithographic (SL) biomodelling in craniofacial surgery.

da Fernandes Silva, A. L., A. M. Borba, N. R. Simão, F. L. M. Pedro, A. H. Borges, and M. Miloro. Customized polymethyl methacrylate implants for the reconstruction of craniofacial osseous defects.

Di Luca, A., B. Ostrowska, I. Lorenzo-Moldero, A. Lepedda, W. Swieszkowski, C. Van Blitterswijk, and L. Moroni. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds.

Di Luca, A., K. Szlazak, I. Lorenzo-Moldero, C. A. Ghebes, A. Lepedda, W. Swieszkowski, C. Van Blitterswijk, and L. Moroni. Influencing chondrogenic differentiation of human mesenchymal stromal cells in scaffolds displaying a structural gradient in pore size.

Dorafshar, A. H., B. Bojovic, M. R. Christy, D. E. Borsuk, N. T. Iliff, E. N. Brown, C. K. Shaffer, T. N. Kelley, D. L. Kukuruga, R. N. Barth, S. T. Bartlett, and E. D. Rodriguez. Total face, double jaw, and tongue transplantation: an evolutionary concept.

Dunham, S. Surgeons helper: 3D printing is revolutionizing health care (Op-Ed),

Eshraghi, S., and S. Das. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering.

Farias, T. P., F. L. Dias, B. A. Sousa, M. S. Galvão, D. Bispo, and A. C. Pastl. Prototyping: major advance in surgical planning and customizing prostheses in patients with bone tumors of the head and neck.

Fisher, M., A. Dorafshar, B. Bojovic, P. N. Manson, and E. D. Rodriguez. The evolution of critical concepts in aesthetic craniofacial microsurgical reconstruction.

Fu, Q., E. Saiz, and A. P. Tomsia. Direct ink writing of highly pourous and strong glass scaffolds for load-bearing bone defects repair and regeneration.

Gao, G., and X. Cui. Three-dimensional bioprinting in tissue engineering and regenerative medicine.

Gao, G., A. F. Schilling, K. Hubbell, T. Yonezawa, D. Truong, Y. Hong, G. Dai, and X. Cui. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA.

Gao, G., A. F. Schilling, T. Yonezawa, J. Wang, G. Dai, and X. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells.

Gibson, I., D. W. Rosen, and B. Stucker. Additive Manufacturing Technologies. New York: Springer, pp. 1740, 2010. doi:

Gougoutas, A. J., N. Bastidas, S. P. Bartlett, and O. Jackson. The use of computer-aided design/manufacturing (CAD/CAM) technology to aid in the reconstruction of congenitally deficient pediatric mandibles: A case series.

Graham, S., A. Leonidou, M. Lester, M. Heliotis, A. Mantalaris, and E. Tsiridis. Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing.

He, Y., G. Xue, and J. Fu. Fabrication of low cost soft tissue prostheses with the desktop 3D printer.

Hollister, S. J., C. Y. Lin, E. Saito, R. D. Schek, J. M. Taboas, J. M. Williams, B. Partee, C. L. Flanagan, A. Diggs, E. N. Wilke, G. H. Van Lenthe, R. Mller, T. Wirtz, S. Das, S. E. Feinberg, and P. H. Krebsbach. Engineering craniofacial scaffolds.

Huang, T. S., M. N. Rahaman, N. D. Doiphode, M. C. Leu, B. S. Bal, D. E. Day, and X. Liu. Freeze extrusion fabrication of 1393 bioactive glass scaffolds for repair and regeneration of load-bearing bones.

Hung, B. P., D. L. Hutton, K. L. Kozielski, C. J. Bishop, B. Naved, J. J. Green, A. I. Caplan, J. M. Gimble, A. H. Dorafshar, and W. L. Grayson. Platelet-derived growth factor BB enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells.

Hung, B. P., B. A. Naved, E. L. Nyberg, M. Dias, C. A. Holmes, J. H. Elisseeff, A. H. Dorafshar, and W. L. Grayson. Three-dimensional printing of bone extracellular matrix for craniofacial regeneration.

Hutmacher, D. W., J. T. Schantz, C. X. F. Lam, K. C. Tan, and T. C. Lim. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective.

Hutmacher, D. W., T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, and K. C. Tan. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling.

Inzana, J. A., D. Olvera, S. M. Fuller, J. P. Kelly, O. A. Graeve, E. M. Schwarz, S. L. Kates, and H. A. Awad. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.

Jalbert, F., S. Boetto, F. Nadon, F. Lauwers, E. Schmidt, and R. Lopez. One-step primary reconstruction for complex craniofacial resection with PEEK custom-made implants.

Kang, H.-W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.

Keriquel, V., F. Guillemot, I. Arnault, B. Guillotin, S. Miraux, J. Amde, J.-C. Fricain, and S. Catros. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice.

Khanna, A., S. Balaji, T. Jawahar, A. D. 3D printing: new opportunities for the medical devices industry 2015.

Kim, R. Y., A. C. Fasi, and S. E. Feinberg. Soft tissue engineering in craniomaxillofacial surgery,

Kolan, K. C. R., M. C. Leu, G. E. Hilmas, R. F. Brown, and M. Velez. Fabrication of 1393 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering.

Kolesky, D. B., R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs.

Levine, J. P., A. Patel, P. B. Saadeh, and D. L. Hirsch. Computer-aided design and manufacturing in craniomaxillofacial surgery.

Loh, Q. L., and C. Choong. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size.

Lohfeld, S., S. Cahill, V. Barron, P. McHugh, L. Drselen, L. Kreja, C. Bausewein, and A. Ignatius. Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds.

Mandrycky, C., Z. Wang, K. Kim, and D.-H. Kim. 3D bioprinting for engineering complex tissues.

McKinstry, R. E. Fundamentals of Facial Prosthetics. Arlington: ABI Professional publications, 1995.

Melchels, F. P. W., A. M. C. Barradas, C. A. Van Blitterswijk, J. De Boer, J. Feijen, and D. W. Grijpma. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.

Merceron, T. K., M. Burt, Y.-J. Seol, H.-W. Kang, S. J. Lee, J. J. Yoo, and A. Atala. A 3D bioprinted complex structure for engineering the muscletendon unit.

Murphy, C. M., M. G. Haugh, and F. J. OBrien. The effect of mean pore size on cell attachment, proliferation and migration in collagenglycosaminoglycan scaffolds for bone tissue engineering.

Navarro, M., A. Michiardi, O. Castaño, and J. A. Planell. Biomaterials in orthopaedics.

Obregon, F., C. Vaquette, S. Ivanovski, D. W. Hutmacher, and L. E. Bertassoni. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering.

Parthasarathy, J. 3D modeling, custom implants and its future perspectives in craniofacial surgery.

Pati, F., T.-H. Song, G. Rijal, J. Jang, S. W. Kim, and D.-W. Cho. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

Peled, M., I. A. El-Naaj, Y. Lipin, and L. Ardekian. The use of free fibular flap for functional mandibular reconstruction.

Perez, R. A., and G. Mestres. Role of pore size and morphology in musculo-skeletal tissue regeneration.

Mater. Sci. Eng. C Mater. Biol. Appl.

Podolsky, D. J., J. G. Mainprize, G. P. Edwards, and O. M. Antonyshyn. Patient-specific orbital implants: development and implementation of technology for more accurate orbital reconstruction.

Rasperini, G., S. P. Pilipchuk, C. L. Flanagan, C. H. Park, G. Pagni, S. J. Hollister, and W. V. Giannobile. 3D-printed bioresorbable scaffold for periodontal repair.

Rodby, K. A., S. Turin, R. J. Jacobs, J. F. Cruz, V. J. Hassid, A. Kolokythas, and A. K. Antony. Advances in oncologic head and neck reconstruction: systematic review and future considerations of virtual surgical planning and computer aided design/computer aided modeling.

J. Plast. Reconstr. Aesthetic Surg.

Roohani-Esfahani, S.-I., P. Newman, and H. Zreiqat. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects.

Sawyer, A. A., S. J. Song, E. Susanto, P. Chuan, C. X. F. Lam, M. A. Woodruff, D. W. Hutmacher, and S. M. Cool. The stimulation of healing within a rat calvarial defect by mPCLTCP/collagen scaffolds loaded with rhBMP-2.

Seruya, M., D. E. Borsuk, S. Khalifian, B. S. Carson, N. M. Dalesio, and A. H. Dorafshar. Computer-aided design and manufacturing in craniosynostosis surgery.

Shan, X.-F., H.-M. Chen, J. Liang, J.-W. Huang, and Z.-G. Cai. Surgical reconstruction of maxillary and mandibular defects using a printed titanium mesh.

Suwanprateeb, J., R. Sanngam, W. Suvannapruk, and T. Panyathanmaporn. Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing.

Tanner, P. B., and S. R. Mobley. External auricular and facial prosthetics: a collaborative effort of the reconstructive surgeon and anaplastologist.

Facial Plast. Surg. Clin. North Am.

Temple, J. P., D. L. Hutton, B. P. Hung, P. Y. Huri, C. A. Cook, R. Kondragunta, X. Jia, and W. L. Grayson. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.

Thomas, K. F. The art of clinical anaplastology. Great Britain: Thomas publishing, 2006.

Van Gestel, N. A. P., J. Geurts, D. J. W. Hulsen, B. Van Rietbergen, S. Hofmann, and J. J. Arts. Clinical applications of S53P4 bioactive glass in bone healing and osteomyelitic treatment: a literature review.

Visser, A., G. M. Raghoebar, R. P. van Oort, and A. Vissink. Fate of implant-retained craniofacial prostheses: life span and aftercare.

Wang, S. C., C. Wong Po Foo, A. Warrier, M.-M. Poo, S. C. Heilshorn, and X. Zhang. Gradient lithography of engineered proteins to fabricate 2D and 3D cell culture microenvironments.

Wilkins, L. M., S. R. Watson, S. J. Prosky, S. F. Meunier, and N. L. Parenteau. Development of a bilayered living skin construct for clinical applications.

Yanez, M., J. Rincon, A. Dones, C. De Maria, R. Gonzales, and T. Boland. In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds.

Yuan, H., H. Fernandes, P. Habibovic, J. de Boer, A. M. C. Barradas, A. de Ruiter, W. R. Walsh, C. A. van Blitterswijk, and J. D. de Bruijn. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting.

Zhang, Y., C. Yin, C. Zheng, and K. Zhou. Computational hydrographic printing.

Zhou, Y., D. W. Hutmacher, S. Varawan, and T. M. Lim. In vitro bone engineering based on polycaprolactone and polycaprolactone: tricalcium phosphate composites.

Zuo, K. J., and G. H. Wilkes. Clinical outcomes of osseointegrated prosthetic auricular reconstruction in patients with a compromised ipsilateral temporoparietal fascial flap.

© Biomedical Engineering Society 2016

Department of Biomedical Engineering, Translational Tissue Engineering Center

Johns Hopkins University School of Medicine

Department of Art as Applied to Medicine

Johns Hopkins University School of Medicine

Department of Plastic and Reconstructive Surgery

Johns Hopkins University School of Medicine

Department of Material Sciences & Engineering

Johns Hopkins University School of Medicine

Nyberg, E.L., Farris, A.L., Hung, B.P. et al. Ann Biomed Eng (2017) 45: 45.

Biomedical Engineering Society (BMES)

Unlimited access to the full article

Include local sales tax if applicable

Learn about institutional subscriptions

We use cookies to improve your experience with our site.

Over 10 million scientific documents at your fingertips

© 2017 Springer International Publishing AG. Part ofSpringer Nature.

Not logged inNot affiliated183.240.202.32

Post Created 739

Related Posts

Begin typing your search above and press enter to search. Press ESC to cancel.

Back To Top